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I consider a Josephson junction crossing the middle of a thin rectangular superconducting strip of length L
and width W subjected to a perpendicular magnetic induction B. I calculate the spatial dependence of the
gauge-invariant phase difference across the junction and the resulting B dependence of the critical current
Ic�B�.
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I. INTRODUCTION

Grain-boundary Josephson junctions play an important
role in thin films of YBa2Cu3O7−�.1–4 Various theoretical ap-
proaches have been taken to understand the physics of Jo-
sephson junctions in thin films.5–7 When the film thickness d
is less than the London penetration depth �, the current den-
sity j is practically uniform across the thickness, and the
characteristic length governing the spatial distribution of the
magnetic field distribution is the Pearl length,8

� = 2�2/d . �1�

However, various studies have shown that there is a nonlocal
relationship between the Josephson-current distribution in
the vicinity of a Josephson vortex core and the magnetic field
these currents generate,9–12 and the characteristic length de-
scribing the spatial variation of the gauge-invariant phase
across the junction is �in SI units�

� = �0/4��0�2jc, �2�

where �0=h /2e is the superconducting flux quantum and jc
�assumed to be independent of position� is the maximum
Josephson current density that can flow as a supercurrent
through the junction.

The integral equations relating the gauge-invariant phase
difference across the junction to the magnetic field generated
by a vortex in a long Josephson junction in a thin �d	��
film of lateral dimensions large by comparison with � and �
were examined analytically and solved numerically in Ref. 6
for arbitrary ratios of � /�. The case of a short Josephson
junction bisecting a long superconducting strip of width W
was studied in Ref. 7 under the assumptions that W
� and
W
�.

In this paper I revisit the latter problem by considering a
thin rectangular uniform superconducting strip of length L,
width W, and thickness d �d	�� divided into two halves by
a Josephson junction at x=0, as shown in Fig. 1. An applied
magnetic induction B= ẑB induces screening currents in the
film. However, I consider here only the simplest case for
which �=2�2 /d is much larger than the smaller of L and W,
such that the self-field generated by the screening currents
can be neglected.7 The purpose of this paper is to calculate
how the screening currents induced in response to B affect
the B dependence of the maximum Josephson critical current
Ic�B�.

In Sec. II I give a brief discussion of the derivation of the
basic equation for the gauge-invariant phase difference
���y� across the junction, in Sec. III I present the solutions
for ���y� for arbitrary ratios of L /W, and in Sec. IV I briefly
summarize the results.

II. GAUGE-INVARIANT PHASE DIFFERENCE

In the context of the Ginzburg-Landau �GL� theory,13,14

the superconducting order parameter can be expressed as

=
0fei�, where 
0 is the magnitude of the order param-
eter in equilibrium, f = �
� /
0 is the reduced order param-
eter, and � is the phase. The second GL equation �in SI units�
is

j = −
f2

�0�2�A +
�0

2�
� �� , �3�

where A is the vector potential and B=��A is the magnetic
induction. Since j is a gauge-invariant quantity, so is the
quantity within the parentheses on the right-hand side. Dif-
ferent choices for the gauge of the vector potential A result in
different expressions for �.

With a sinusoidal current-phase relation, the Josephson
current density in the x direction across the junction of width
di at x=0 is jx�y�= jc sin ���y�, where jc is the maximum
Josephson current density and ���y� is the gauge-invariant
phase difference between the left �a� and right �b� supercon-
ductors

W/2

-W/2

L/2-L/2

y
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L R

FIG. 1. Sketch of the thin rectangular superconducting strip of
width W and length L considered here. An in-line Josephson junc-
tion of width di �bold line� is at the center at x=0. A magnetic
induction B is applied in the z direction. Current leads of separation
L �not shown� symmetrically feed current I to the sample along the
x direction.

PHYSICAL REVIEW B 81, 144515 �2010�

1098-0121/2010/81�14�/144515�4� ©2010 The American Physical Society144515-1

http://dx.doi.org/10.1103/PhysRevB.81.144515


���y� = �a�−
di

2
,y� − �b�di

2
,y� −

2�

�0
�

−di/2

di/2

Ax�x,y�dx .

�4�

I assume here that the induced or applied current densities
ja and jb on the left- and right-hand sides of the junction are
so weak that the suppression of the magnitude of the super-
conducting order parameter is negligible, such that f =1. A
simple relation between these current densities and the
gauge-invariant phase difference can be obtained by integrat-
ing the vector potential A around a very narrow rectangular
loop of width di in the xy plane that just encloses the junction
�with the bottom end at the origin and the top end at y�,
neglecting the magnetic flux up through the contour, making
use of Eq. �3� with f =1 for those portions of the integration
along the sides of the junction, and noting that, by symmetry,
jay�0,y�=−jby�0,y�

���y� = ��0 +
4��0�2

�0
�

0

y

jby�0,y��dy�, �5�

where ��0=���0�, such that

d���y�/dy = �4��0�2/�0�jby�0,y� . �6�

III. SOLVING FOR ��

I next assume that the Josephson coupling is so weak that
the currents ja and jb on the left- and right-hand sides of the
junction induced in response to the applied magnetic induc-
tion B are far larger than the Josephson current density. This
is equivalent to the assumption that W
�. Since ja easily
can be obtained by symmetry from jb, I calculate only jb in
the region x�0 and suppress the subscript b.

With the gauge choice A=−x̂By, since � · j=0 �see Eq.
�3��, �2�=0 must be solved subject to the boundary
conditions following from jx�0,y�= jx�L /2,y�=0 and
jy�x , �W /2�=0:

�x�0,y� = �x�L/2,y� = 2�By/�0, �7�

�y�x, � W/2� = 0, �8�

where �x=�� /�x and �y =�� /�y. The solution, obtained by
the method of separation of variables, is �up to a constant�

��x,y� =
8�B

�0W
	
n=0

�
�− 1�nsinh�kn�x − L/4��sin�kny�

kn
3 cosh�knL/4�

, �9�

where kn= �n+1 /2�2� /W.
The current density j�x ,y� now can be obtained from Eq.

�3�. Since � · j=0, we also can write j=��S, where S= ẑS,
and S�x ,y�= �B /2�0�2�s�x ,y� is the stream function given by

s�x,y� = y2 +
8

W
	
n=0

�
�− 1�ncosh�kn�x − L/4��cos�kny�

kn
3 cosh�knL/4�

.

�10�

The series converges rapidly, and Fig. 2 shows the result for

x�0 obtained by summing over n from 0 to 10 when L /W
=2.

Since Eq. �3� yields jy�0,y�=−��0 /2��0�2��y�0,y�, Eq.
�6� can be integrated to obtain �assuming the additive con-
stant ��0=0�

���y� =
16�B

�0W
	
n=0

�
�− 1�n

kn
3 tanh�knL/4�sin�kny� . �11�

As shown in the Appendix, when L→�, the sum can be
expressed in terms of the Lerch transcendent ��z ,s ,a�, and
in this limit ���y� also can be expressed as ���y�
= �4BW2 /�0��0��y /W�, where �0��� is a function defined in
Ref. 7. This is the explanation of why �0��� was found to be
a material-independent universal function7 when ��W and
��W.

For all ratios of L /W, the maximum value of ���y� oc-
curs at y=W /2, where

���W/2� =
14��3�BW2

�2�0
= 1.705

BW2

�0
, L → � , �12�

���W/2� =
�BWL

2�0
= 1.571

BWL

�0
, L 
 W . �13�

The solid curve in Fig. 3 shows ���W /2� normalized to
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FIG. 2. Contour plot of the stream function S�x ,y� in the right
half �x�0� of a strip of length L=2W. The contours correspond to
the streamlines of the current density j induced by the applied mag-
netic induction B= ẑB.
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FIG. 3. ���W /2� �solid� vs L /W and the approximations of Eq.
�12� �dotted-dashed�, Eq. �13� �dotted�, and Eq. �14� �dashed�.
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BW2 /�0 as a function of L /W along with the limiting behav-
iors of Eq. �12� �dotted-dashed� and Eq. �13� �dotted�. The
dashed curve shows the interpolating function,

���W/2� =
14��3�BW2

�2�0
tanh
 �3L

28��3�W� , �14�

where ��3�=1.20206 is the Riemann zeta function.
The plots of ���y� /���W /2� vs y / �W /2� in Fig. 4 show

how the gauge-invariant phase difference depends on the ra-
tio L /W. For L /W→�, the curve lies below sin��y /W�,
shown as the long-dashed curve, and for L
W,
���y� /���W /2�=y / �W /2�, a straight line.

The maximum Josephson current Ic�B�, the maximum in-
tegral of jcd sin ���y� over y from −W /2 to W /2, occurs
when ��0= �� /2, such that

Ic�B�
Ic�0�

=
2

W��0

W/2

cos����y��dy� , �15�

where ���y� is given in Eq. �11�. Figure 5 shows plots of
Ic�B� / Ic�0� vs BW2 /�0 for L /W=�, 1, and 1/2. The stretch-
ing out of the pattern along the horizontal axis as L decreases
is easily understood with the help of Fig. 3.

Let us define �B1 as the value of B at which Ic�B� has its
first zero, �B2 as the difference of the values at which Ic�B�
has its second and first zeros, and �Bn as the difference of
the values at which Ic�B� has its nth and �n−1�th zeros. For

all finite values of L /W, the �Bn are smaller for small n than
for large n. However, for large n, the �Bn approach the lim-
iting value

�B = ��3�0

16W2�
	
n=0

�
tanh��2n + 1��L/4W�

�2n + 1�3 . �16�

To illustrate this, if we approximate ���y� for L→� by
���W /2�sin��y /W� �see the long-dashed curve in Fig. 4�, as
in Ref. 7, then the integral in Eq. �15� can be evaluated in
terms of the Bessel function J0 with the result

Ic�B�
Ic�0�

= �J0�14��3�BW2

�2�0
�� . �17�

For L /W→�, the sum in Eq. �16� can be evaluated as

�B = ��3/14��3���0/W2 = 1.842�0/W2, �18�

as pointed out in Refs. 15 and 16. Using Eq. �17� and the
well-known zeros of J0�x�, we find the following values for
n=1, 2, 3, 4, and 5: �Bn /�B=0.7655, 0.9916, 0.9975,
0.9988, and 0.9993. However, to evaluate the zeros of
Ic�B� / Ic�0� without using the Bessel-function approximation,
we must numerically evaluate Eq. �15�. This yields the fol-
lowing more accurate values for n=1, 2, 3, 4, and 5:
�Bn /�B=0.8173, 0.9866, 0.9946, 0.9968, and 0.9979.

When di
L
W, the gauge-invariant phase difference
���y� of Eq. �11� becomes linear in y, and in this case we
have the familiar Fraunhofer-type pattern,

Ic�B�
Ic�0�

= � sin��BWL/2�0�
�BWL/2�0

� , �19�

such that all the �Bn are the same and equal to

�B = 2�0/WL . �20�

The magnitude of this �B agrees with that in sandwich-type
Josephson junctions with thickness d�� along the z direc-
tion only in the limit di
L	�.17–19

The solid curve in Fig. 6 shows �B, the large-n limit of
�Bn, calculated via Eq. �16� as a function of L /W, along with
the expressions for �B in the limits L /W→� �dotted-
dashed� and L
W �dotted�. The dashed curve shows the
approximate interpolating function obtained from Eq. �14�,

�B = � �3�0

14��3�W2�
 tanh
 �3L

28��3�W� . �21�
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FIG. 4. ���y� /���W /2� vs y / �W /2� for L→� �upper solid
curve�, L /W=1 �dashed�, L /W=0.5 �dotted-dashed�, L /W=0.1
�dotted�, and L
W �lower solid curve�, for which
���y� /���W /2�=y / �W /2�. For comparison, the top long-dashed
curve shows sin��y /W�.
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FIG. 5. Ic�B� / Ic�0� vs BW2 /�0 calculated from Eqs. �11� and
�15� for L /W=� �solid�, L /W=1 �dashed�, and L /W=1 /2 �dotted�.
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FIG. 6. �B vs L /W calculated from Eq. �16� �solid�, Eq. �18�
�dotted-dashed�, Eq. �20� �dotted�, and Eq. �21� �dashed�.
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IV. SUMMARY

In this paper I have considered a Josephson junction bi-
secting a rectangular superconducting thin film of large Pearl
length �=2�2 /d subjected to a perpendicular magnetic in-
duction B. I calculated the gauge-invariant phase difference
and used it to determine the B dependence of the Josephson
critical current density Ic�B�.
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APPENDIX: THE LIMIT L\�

In the limit L→�, the gauge-invariant phase difference
���y� given in Eq. �11� can be expressed as ���y�
= �16BW2 /�2�0����y /W�, where

���� = 	
n=0

�

�− 1�nsin��2n + 1���/�2n + 1�3 �A1�

=�i/16�e−i����− e−2i�,3,1/2� − e2i���− e2i�,3,1/2�� ,

�A2�

and ��z ,s ,a�=	k=0
� zk / �k+a�s is the Lerch transcendent.20

Note that ��0�=0 and ��� /2�=7��3� /8=1.0518.
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